Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease☆
نویسندگان
چکیده
Progressive loss of substantia nigra dopamine neurons (SN DA) is a hallmark of aging and of Parkinson's disease (PD). Mutations in PARK genes cause familial PD forms. Increased expression of alpha-synuclein (PARK4) is a disease-triggering event in familial PD and also observed in SN DA neurons in sporadic PD but related transcriptional changes are unknown. With optimized single-cell quantitative real-time polymerase chain reaction analysis, we compared messenger RNA and microRNA levels in SN DA neurons from sporadic PD patients and controls. Non-optimally matched donor ages and RNA integrities are common problems when analyzing human samples. We dissected the influence of distinct ages and RNA integrities of our samples by applying a specifically-optimized, linear-mixed-effects model to quantitative real-time polymerase chain reaction-data. We identified that elevated alpha-synuclein messenger RNA levels in SN DA neurons of human PD brains were positively correlated with corresponding elevated levels of mRNAs for functional compensation of progressive SN DA loss and for enhanced proteasomal (PARK5/UCHL1) and lysosomal (PARK9/ATPase13A2) function, possibly counteracting alpha-synuclein toxicity. In contrast, microRNA miR-133b levels, previously implicated in transcriptional dysregulation in PD, were not altered in SN DA neurons in PD.
منابع مشابه
Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice.
Midbrain dopaminergic (mDA) neurons control movement and emotion, and their degeneration leads to motor and cognitive defects in Parkinson's disease (PD). miR-133b is a conserved microRNA that is thought to regulate mDA neuron differentiation by targeting Pitx3, a transcription factor required for appropriate development of mDA substantia nigra neurons. Moreover, miR-133b has been found to be d...
متن کاملP 124: Decrease Signs Parkinson`s Disease with DOPAMINE in Apple
After Alzheimer's disease, Parkinson's disease is the most common nerve-damaging disease. Parkinson's is a progressive and chronic disease where cells secrete dopamine-cut black flesh and in the absence of dopamine in the brain destroyed the irregular body movements. Man eats the food that causes the formation of the neurotransmitters. Tthree neurotransmitters: dopamine, serotonin, norepinephri...
متن کاملA MicroRNA feedback circuit in midbrain dopamine neurons.
MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (...
متن کاملDopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملMorphine regulates dopaminergic neuron differentiation via miR-133b.
Morphine is one of the analgesics used most to treat chronic pain, although its long-term administration produces tolerance and dependence through neuronal plasticity. The ability of morphine to regulate neuron differentiation in vivo has been reported. However, the detailed mechanisms have not yet been elucidated because of the inability to separate maternal influences from embryonic events. U...
متن کامل